產(chǎn)品中心
淺談基于模型預測的微電網(wǎng)混合儲能能量管理系統(tǒng)
任運業(yè)
安科瑞電氣股份有限公司 上海嘉定 201801
摘 要:針對由蓄電池和氫儲能裝置的混合儲能系統(tǒng),提出一種基于模型預測-動態(tài)規(guī)劃的混合儲能系統(tǒng)能量管理策略,協(xié)調能源并網(wǎng)對電網(wǎng)造成的沖擊、降低系統(tǒng)能量損耗和儲能運行成本建立混合儲能系統(tǒng)功率預測模型。構建懲罰函數(shù)將三個評價目標轉化為單一目標求解,約束儲能系統(tǒng)的容量、功率等指標,并采用動態(tài)規(guī)劃算法優(yōu)化蓄電池充、放電控制,算例結果表明,該控制策略協(xié)調了混合儲能的功率分配,具有更好的并網(wǎng)平波抵制效果,降低能耗效果,使微網(wǎng)運行具有良好的經(jīng)濟性。
關鍵詞:混合儲能、模型預測、動態(tài)規(guī)劃
0 引言
集成光伏發(fā)電、風力發(fā)電、蓄電池-氫儲能混合儲能系統(tǒng)的交流微網(wǎng)既可以平抑新能源輸出的功率波動,削減并網(wǎng)時對電網(wǎng)的沖擊影響。還可以克服單一蓄電池儲能功率受限的問題,提高能源利用率。并網(wǎng)系統(tǒng)要求微網(wǎng)具有不間斷運行的能力,如何平滑微網(wǎng)內(nèi)各儲能裝置的出力,使得能量輸出滿足并網(wǎng)標準,同時降低系統(tǒng)能量損耗是混合儲能系統(tǒng)的重要研究內(nèi)容。
本文以光/風/蓄電池-氫儲能構成的交流微網(wǎng)為對象,提出一種基于模型預測-動態(tài)規(guī)劃的能量調度策略,實現(xiàn)面向混合儲能出力的有xian時域優(yōu)化控制。充分結合蓄電池和氫燃料電池的儲能特性,設計滿足并網(wǎng)標準、降低儲能充放電成本和降低系統(tǒng)能量損失的三個目標函數(shù),結合約束條件,采用動態(tài)規(guī)劃算法構建控制方程得到混合儲能系統(tǒng)能量調度方案,實現(xiàn)微網(wǎng)的穩(wěn)定運行。
1 交流微網(wǎng)混合儲能模型
交流微網(wǎng)混合儲能系統(tǒng)包含光伏發(fā)電、風力發(fā)電以及蓄電池-氫混合儲能系統(tǒng),微網(wǎng)通過交流母線與大電網(wǎng)連接,氫儲能裝置由電解水、燃料電池、儲氫裝置三個部分組成。電解水裝置消納光伏和風電制氫,產(chǎn)生的氫氣存儲在儲氫裝置中作為燃料電池的反應物,蓄電池-氫儲能混合儲能系統(tǒng)具有調節(jié)速度快、穩(wěn)定性好等優(yōu)點,交流微網(wǎng)結構如圖1所示。
圖 1 交流微網(wǎng)結構
圖中PPV為光伏出力,單位為KWH。PW為風電出力,單位為KW。PB為蓄電池功率,單位為KW。充電時,PB<0,放電時PB>0,PH為氫儲能裝置的充放電功率,單位為KW。燃料電池發(fā)出功率時,PH>0電解槽吸收功率時,PH<0,PL為負載消耗功率,單位為KW。
蓄電池模型
式中:EB(t)為蓄電池剩余電量,EBmax為蓄電池額定容量,ηB為光伏/ 風電能量經(jīng)蓄電池存儲及放電并網(wǎng)過程中的轉換效率,ηBC為蓄電池充電效率,ηBD為蓄電池放電效率,SOC(State Of Charge)為蓄電池荷電狀態(tài),Δt為采樣時間。
氫儲能模型
式中:ηH 為氫儲能系統(tǒng)的充放電效率,ηHC為電解槽的電-氫轉換效率,ηHD為燃料電池放電效率。
2 混合儲能預測模型
模型預測是結合采樣時刻測量值和前瞻預測值,將模型輸出反饋作用于被控對象,對目標函數(shù)滾動優(yōu)化,修正預測模型,預測模型輸出控制量施加于混合儲能系統(tǒng),根據(jù)混合儲能系統(tǒng)中蓄電池和氫儲能裝置的剩余能量決定儲能裝置的出力,執(zhí)一個步長后,更新狀態(tài)變量值和光伏/風電功率預行測值,滾動優(yōu)化直至調度周期結束。
2.1 預測模型
采用灰色模型GM(1.N)與BP 神經(jīng)網(wǎng)絡組合預測方法,得到前瞻預測周期內(nèi)光伏和風電功率預測值。預測周期 Ts內(nèi),預測模型接收光伏、風電功率預測值,預測周期內(nèi)有N次滾動優(yōu)化,t+ kΔt對應k個采樣點。
通過對混合儲能出力控制,實現(xiàn)儲能設備在良好狀態(tài)下運行。在采樣時刻k,取控制變量為:
2.2 目標函數(shù)
對于混合儲能的交流微網(wǎng),既要考慮輸出電能符合并網(wǎng)標準,還要考慮系統(tǒng)運行經(jīng)濟性成本,同時保障系統(tǒng)能量效率,減少損失。
(1)并網(wǎng)功率波動: 為體現(xiàn)儲能系統(tǒng)平抑波動的能力,以微網(wǎng)中光伏和風電的并網(wǎng)功率波動小為控制目標,并網(wǎng)波動越限幅值ΔPG、越限shi間占比 ΔPT 表示為:
式中:PPVmax、PWmax分別為光伏發(fā)電和風力發(fā)電的日前預測值,Det為大電網(wǎng)允許功率波動下限。
(2)儲能充放電成本, 為合理利用儲能系統(tǒng),提高經(jīng)濟性,儲能充放電成本小為目標。燃料電池充放電成本很低,忽略不計,因此只計及蓄電池充放電成本。
式中:γB 為蓄電池充放電成本系數(shù),PBC、PBD分別為充放電功率。
(3)系統(tǒng)能量損耗,微網(wǎng)系統(tǒng)能量損耗包括受并網(wǎng)功率影響導致的能量損失、蓄電池-氫混合儲能系統(tǒng)在能量轉換損耗,微網(wǎng)系統(tǒng)能量轉換損耗為:
式中:ΔEPW(t)為并網(wǎng)能量損耗,ΔEB(t)為蓄電池能量轉換損耗,ΔEH(t)為氫儲能系統(tǒng)能量轉換損耗。
(4)懲罰函數(shù)
利用懲罰函數(shù)對以上三個評價目標轉化為單一目標求解,在保證儲能運行成本小、降低系統(tǒng)能量損耗前提下,將并網(wǎng)功率波動約束在一定范圍內(nèi)。提高并網(wǎng)穩(wěn)定性,構建懲罰函數(shù)如下:
3動態(tài)規(guī)劃能量管理策略
對于多階段函數(shù)控制模型,采用動態(tài)規(guī)劃算法將預測模型中多時間階段多目標求解轉化為多個單一時間階段求解,實現(xiàn)不同時間段混合儲能功率分配優(yōu)化控制。
與蓄電池相比,氫-電轉換效率相對較低,氫儲能僅作為儲能的輔助手段,動態(tài)規(guī)劃時不考慮氫儲能變化。為保證蓄電池平緩出力,將不同階段儲能能量管理優(yōu)化問題看作蓄電池SOC的變化過程,采用動態(tài)規(guī)劃算法優(yōu)化多時間段蓄電池充放電過程的步驟:
步驟1 設定狀態(tài)變量
以儲能裝置當前荷電狀態(tài)S0為初始規(guī)劃狀態(tài),相鄰采樣時刻間荷電狀態(tài)值為 ΔS
步驟2 列些k時刻的狀態(tài)轉移方程
式中:l為 k-1 時刻的狀態(tài)值。
狀態(tài)轉移中需滿足功率約束和混合儲能的容量約束,每個采樣周期獲得目標函數(shù)小的控制變量,繼續(xù)下一次滾動優(yōu)化,直至k=Ts時結束。
4安科瑞Acrel-2000ES儲能能量管理系統(tǒng)解決方案
4.1概述
安科瑞Acrel-2000ES儲能能量管理系統(tǒng)具有完善的儲能監(jiān)控與管理功能,涵蓋了儲能系統(tǒng)設備(PCS、BMS、電表、消防、空調等)的詳細信息,實現(xiàn)了數(shù)據(jù)采集、數(shù)據(jù)處理、數(shù)據(jù)存儲、數(shù)據(jù)查詢與分析、可視化監(jiān)控、報警管理、統(tǒng)計報表等功能。在應用上支持能量調度,具備計劃曲線、削峰填谷、需量控制、備用電源等控制功能。系統(tǒng)對電池組性能進行實時監(jiān)測及歷史數(shù)據(jù)分析、根據(jù)分析結果采用智能化的分配策略對電池組進行充放電控制,優(yōu)化了電池性能,提高電池壽命。系統(tǒng)支持Windows操作系統(tǒng),數(shù)據(jù)庫采用SQLServer。本系統(tǒng)既可以用于儲能一體柜,也可以用于儲能集裝箱,是專門用于儲能設備管理的一套軟件系統(tǒng)平臺。
4.2適用場合
4.2.1系統(tǒng)可應用于城市、高速公路、工業(yè)園區(qū)、工商業(yè)區(qū)、居民區(qū)、智能建筑、海島、無電地區(qū)可再生能源系統(tǒng)監(jiān)控和能量管理需求。
4.2.2工商業(yè)儲能四大應用場景
1)工廠與商場:工廠與商場用電習慣明顯,安裝儲能以進行削峰填谷、需量管理,能夠降低用電成本,并充當后備電源應急;
2)光儲充電站:光伏自發(fā)自用、供給電動車充電站能源,儲能平抑大功率充電站對于電網(wǎng)的沖擊;
3)微電網(wǎng):微電網(wǎng)具備可并網(wǎng)或離網(wǎng)運行的靈活性,以工業(yè)園區(qū)微網(wǎng)、海島微網(wǎng)、偏遠地區(qū)微網(wǎng)為主,儲能起到平衡發(fā)電供應與用電負荷的作用;
4)新型應用場景:工商業(yè)儲能探索融合發(fā)展新場景,已出現(xiàn)在5G基站、換電重卡、港口岸電等眾多應用場景。
4.3系統(tǒng)結構
4.4.1實時監(jiān)測
微電網(wǎng)能量管理系統(tǒng)人機界面友好,應能夠以系統(tǒng)一次電氣圖的形式直觀顯示各電氣回路的運行狀態(tài),實時監(jiān)測各回路電壓、電流、功率、功率因數(shù)等電參數(shù)信息,動態(tài)監(jiān)視各回路斷路器、隔離開關等合、分閘狀態(tài)及有關故障、告警等信號。其中,各子系統(tǒng)回路電參量主要有:三相電流、三相電壓、總有功功率、總無功功率、總功率因數(shù)、頻率和正向有功電能累計值;狀態(tài)參數(shù)主要有:開關狀態(tài)、斷路器故障脫扣告警等。
系統(tǒng)應可以對分布式電源、儲能系統(tǒng)進行發(fā)電管理,使管理人員實時掌握發(fā)電單元的出力信息、收益信息、儲能荷電狀態(tài)及發(fā)電單元與儲能單元運行功率設置等。
系統(tǒng)應可以對儲能系統(tǒng)進行狀態(tài)管理,能夠根據(jù)儲能系統(tǒng)的荷電狀態(tài)進行及時告警,并支持定期的電池維護。
微電網(wǎng)能量管理系統(tǒng)的監(jiān)控系統(tǒng)界面包括系統(tǒng)主界面,包含微電網(wǎng)光伏、風電、儲能、充電樁及總體負荷組成情況,包括收益信息、天氣信息、節(jié)能減排信息、功率信息、電量信息、電壓電流情況等。根據(jù)不同的需求,也可將充電,儲能及光伏系統(tǒng)信息進行顯示。
圖2系統(tǒng)主界面
子界面主要包括系統(tǒng)主接線圖、光伏信息、風電信息、儲能信息、充電樁信息、通訊狀況及一些統(tǒng)計列表等。
光伏界面
圖3光伏系統(tǒng)界面
本界面用來展示對光伏系統(tǒng)信息,主要包括逆變器直流側、交流側運行狀態(tài)監(jiān)測及報警、逆變器及電站發(fā)電量統(tǒng)計及分析、并網(wǎng)柜電力監(jiān)測及發(fā)電量統(tǒng)計、電站發(fā)電量年有效利用小時數(shù)統(tǒng)計、發(fā)電收益統(tǒng)計、碳減排統(tǒng)計、輻照度/風力/環(huán)境溫濕度監(jiān)測、發(fā)電功率模擬及效率分析;同時對系統(tǒng)的總功率、電壓電流及各個逆變器的運行數(shù)據(jù)進行展示。
儲能界面
圖4儲能系統(tǒng)界面
本界面主要用來展示本系統(tǒng)的儲能裝機容量、儲能當前充放電量、收益、SOC變化曲線以及電量變化曲線。
圖5儲能系統(tǒng)PCS參數(shù)設置界面
本界面主要用來展示對PCS的參數(shù)進行設置,包括開關機、運行模式、功率設定以及電壓、電流的限值。
圖6儲能系統(tǒng)BMS參數(shù)設置界面
本界面用來展示對BMS的參數(shù)進行設置,主要包括電芯電壓、溫度保護限值、電池組電壓、電流、溫度限值等。
圖7儲能系統(tǒng)PCS電網(wǎng)側數(shù)據(jù)界面
本界面用來展示對PCS電網(wǎng)側數(shù)據(jù),主要包括相電壓、電流、功率、頻率、功率因數(shù)等。
圖8儲能系統(tǒng)PCS交流側數(shù)據(jù)界面
本界面用來展示對PCS交流側數(shù)據(jù),主要包括相電壓、電流、功率、頻率、功率因數(shù)、溫度值等。同時針對交流側的異常信息進行告警。
圖9儲能系統(tǒng)PCS直流側數(shù)據(jù)界面
本界面用來展示對PCS直流側數(shù)據(jù),主要包括電壓、電流、功率、電量等。同時針對直流側的異常信息進行告警。
圖10儲能系統(tǒng)PCS狀態(tài)界面
本界面用來展示對PCS狀態(tài)信息,主要包括通訊狀態(tài)、運行狀態(tài)、STS運行狀態(tài)及STS故障告警等。
圖11儲能電池狀態(tài)界面
本界面用來展示對BMS狀態(tài)信息,主要包括儲能電池的運行狀態(tài)、系統(tǒng)信息、數(shù)據(jù)信息以及告警信息等,同時展示當前儲能電池的SOC信息。
圖12儲能電池簇運行數(shù)據(jù)界面
本界面用來展示對電池簇信息,主要包括儲能各模組的電芯電壓與溫度,并展示當前電芯的電壓、溫度值及所對應的位置。
風電界面
圖13風電系統(tǒng)界面
本界面用來展示對風電系統(tǒng)信息,主要包括逆變控制一體機直流側、交流側運行狀態(tài)監(jiān)測及報警、逆變器及電站發(fā)電量統(tǒng)計及分析、電站發(fā)電量年有效利用小時數(shù)統(tǒng)計、發(fā)電收益統(tǒng)計、碳減排統(tǒng)計、風速/風力/環(huán)境溫濕度監(jiān)測、發(fā)電功率模擬及效率分析;同時對系統(tǒng)的總功率、電壓電流及各個逆變器的運行數(shù)據(jù)進行展示。
充電樁界面
圖14充電樁界面
本界面用來展示對充電樁系統(tǒng)信息,主要包括充電樁用電總功率、交直流充電樁的功率、電量、電量費用,變化曲線、各個充電樁的運行數(shù)據(jù)等。
視頻監(jiān)控界面
圖15微電網(wǎng)視頻監(jiān)控界面
本界面主要展示系統(tǒng)所接入的視頻畫面,且通過不同的配置,實現(xiàn)預覽、回放、管理與控制等。
4.4.2 發(fā)電預測
系統(tǒng)應可以通過歷史發(fā)電數(shù)據(jù)、實測數(shù)據(jù)、未來天氣預測數(shù)據(jù),對分布式發(fā)電進行短期、超短期發(fā)電功率預測,并展示合格率及誤差分析。根據(jù)功率預測可進行人工輸入或者自動生成發(fā)電計劃,便于用戶對該系統(tǒng)新能源發(fā)電的集中管控。
4.4.3策略配置
系統(tǒng)應可以根據(jù)發(fā)電數(shù)據(jù)、儲能系統(tǒng)容量、負荷需求及分時電價信息,進行系統(tǒng)運行模式的設置及不同控制策略配置。如削峰填谷、周期計劃、需量控制、有序充電、動態(tài)擴容等。
4.4.4運行報表
應能查詢各子系統(tǒng)、回路或設備規(guī)定時間的運行參數(shù),報表中顯示電參量信息應包括:各相電流、三相電壓、總功率因數(shù)、總有功功率、總無功功率、正向有功電能等。
圖18運行報表
4.4.5 實時報警
應具有實時報警功能,系統(tǒng)能夠對各子系統(tǒng)中的逆變器、雙向變流器的啟動和關閉等遙信變位,及設備內(nèi)部的保護動作或事故跳閘時應能發(fā)出告警,應能實時顯示告警事件或跳閘事件,包括保護事件名稱、保護動作時刻;并應能以彈窗、聲音、短信和電話等形式通知相關人員。
4.4.6歷史事件查詢
應能夠對遙信變位,保護動作、事故跳閘,以及電壓、電流、功率、功率因數(shù)、電芯溫度(鋰離子電池)、壓力(液流電池)、光照、風速、氣壓越限等事件記錄進行存儲和管理,方便用戶對系統(tǒng)事件和報警進行歷史追溯,查詢統(tǒng)計、事故分析。
應可以對整個微電網(wǎng)系統(tǒng)的電能質量包括穩(wěn)態(tài)狀態(tài)和暫態(tài)狀態(tài)進行持續(xù)監(jiān)測,使管理人員實時掌握供電系統(tǒng)電能質量情況,以便及時發(fā)現(xiàn)和消除供電不穩(wěn)定因素。
1)在供電系統(tǒng)主界面上應能實時顯示各電能質量監(jiān)測點的監(jiān)測裝置通信狀態(tài)、各監(jiān)測點的A/B/C相電壓總畸變率、三相電壓不平衡度和正序/負序/零序電壓值、三相電流不平衡度和正序/負序/零序電流值;
2)諧波分析功能:系統(tǒng)應能實時顯示A/B/C三相電壓總諧波畸變率、A/B/C三相電流總諧波畸變率、奇次諧波電壓總畸變率、奇次諧波電流總畸變率、偶次諧波電壓總畸變率、偶次諧波電流總畸變率;應能以柱狀圖展示2-63次諧波電壓含有率、2-63次諧波電壓含有率、0.5~63.5次間諧波電壓含有率、0.5~63.5次間諧波電流含有率;
3)電壓波動與閃變:系統(tǒng)應能顯示A/B/C三相電壓波動值、A/B/C三相電壓短閃變值、A/B/C三相電壓長閃變值;應能提供A/B/C三相電壓波動曲線、短閃變曲線和長閃變曲線;應能顯示電壓偏差與頻率偏差;
4)功率與電能計量:系統(tǒng)應能顯示A/B/C三相有功功率、無功功率和視在功率;應能顯示三相總有功功率、總無功功率、總視在功率和總功率因素;應能提供有功負荷曲線,包括日有功負荷曲線(折線型)和年有功負荷曲線(折線型);
5)電壓暫態(tài)監(jiān)測:在電能質量暫態(tài)事件如電壓暫升、電壓暫降、短時中斷發(fā)生時,系統(tǒng)應能產(chǎn)生告警,事件能以彈窗、閃爍、聲音、短信、電話等形式通知相關人員;系統(tǒng)應能查看相應暫態(tài)事件發(fā)生前后的波形。
6)電能質量數(shù)據(jù)統(tǒng)計:系統(tǒng)應能顯示1min統(tǒng)計整2h存儲的統(tǒng)計數(shù)據(jù),包括均值、95%概率值、方均根值。
7)事件記錄查看功能:事件記錄應包含事件名稱、狀態(tài)(動作或返回)、波形號、越限值、故障持續(xù)時間、事件發(fā)生的時間。
應可以對整個微電網(wǎng)系統(tǒng)范圍內(nèi)的設備進行遠程遙控操作。系統(tǒng)維護人員可以通過管理系統(tǒng)的主界面完成遙控操作,并遵循遙控預置、遙控返校、遙控執(zhí)行的操作順序,可以及時執(zhí)行調度系統(tǒng)或站內(nèi)相應的操作命令。
圖22遙控功能
應可在曲線查詢界面,可以直接查看各電參量曲線,包括三相電流、三相電壓、有功功率、無功功率、功率因數(shù)、SOC、SOH、充放電量變化等曲線。
圖23曲線查詢
4.4.10統(tǒng)計報表
具備定時抄表匯總統(tǒng)計功能,用戶可以自由查詢自系統(tǒng)正常運行以來任意時間段內(nèi)各配電節(jié)點的用電情況,即該節(jié)點進線用電量與各分支回路消耗電量的統(tǒng)計分析報表。對微電網(wǎng)與外部系統(tǒng)間電能量交換進行統(tǒng)計分析;對系統(tǒng)運行的節(jié)能、收益等分析;具備對微電網(wǎng)供電可靠性分析,包括年停電時間、年停電次數(shù)等分析;具備對并網(wǎng)型微電網(wǎng)的并網(wǎng)點進行電能質量分析。
系統(tǒng)支持實時監(jiān)視接入系統(tǒng)的各設備的通信狀態(tài),能夠完整的顯示整個系統(tǒng)網(wǎng)絡結構;可在線診斷設備通信狀態(tài),發(fā)生網(wǎng)絡異常時能自動在界面上顯示故障設備或元件及其故障部位。
圖25微電網(wǎng)系統(tǒng)拓撲界面
本界面主要展示微電網(wǎng)系統(tǒng)拓撲,包括系統(tǒng)的組成內(nèi)容、電網(wǎng)連接方式、斷路器、表計等信息。
可以對整個微電網(wǎng)系統(tǒng)范圍內(nèi)的設備通信情況進行管理、控制、數(shù)據(jù)的實時監(jiān)測。系統(tǒng)維護人員可以通過管理系統(tǒng)的主程序右鍵打開通信管理程序,然后選擇通信控制啟動所有端口或某個端口,快速查看某設備的通信和數(shù)據(jù)情況。通信應支持ModbusRTU、ModbusTCP、CDT、IEC60870-5-101、IEC60870-5-103、IEC60870-5-104、MQTT等通信規(guī)約。
圖26通信管理
應具備設置用戶權限管理功能。通過用戶權限管理能夠防止未經(jīng)授權的操作(如遙控操作,運行參數(shù)修改等)??梢远x不同級別用戶的登錄名、密碼及操作權限,為系統(tǒng)運行、維護、管理提供可靠的安全保障。
應可以在系統(tǒng)發(fā)生故障時,自動準確地記錄故障前、后過程的各相關電氣量的變化情況,通過對這些電氣量的分析、比較,對分析處理事故、判斷保護是否正確動作、提高電力系統(tǒng)安全運行水平有著重要作用。其中故障錄波共可記錄16條,每條錄波可觸發(fā)6段錄波,每次錄波可記錄故障前8個周波、故障后4個周波波形,總錄波時間共計46s。每個采樣點錄波至少包含12個模擬量、10個開關量波形。
圖28故障錄波
4.4.15事故追憶
可以自動記錄事故時刻前后一段時間的所有實時掃描數(shù)據(jù),包括開關位置、保護動作狀態(tài)、遙測量等,形成事故分析的數(shù)據(jù)基礎。
用戶可自定義事故追憶的啟動事件,當每個事件發(fā)生時,存儲事故qian10個掃描周期及事故后10個掃描周期的有關點數(shù)據(jù)。啟動事件和監(jiān)視的數(shù)據(jù)點可由用戶規(guī)定和隨意修改。
圖29事故追憶
4.5系統(tǒng)硬件配置清單
序號 | 設備 | 型號 | 圖片 | 說明 |
1 | 能量管理系統(tǒng) | Acre1-2000ES | 內(nèi)部設備的數(shù)據(jù)采集與監(jiān)控,由通信管理機、工業(yè)平板電腦、串口服務器、遙信模塊及相關通信輔件組成。 數(shù)據(jù)采集、上傳及轉發(fā)至服 務器及協(xié)同控制裝置。 策略控制:計劃曲線、需量控制、削峰填谷、備用電源等。 | |
2 | 工業(yè)平板電腦 | PPX133L |
2)可視化展示:顯示系統(tǒng)運行信息 | |
3 | 交流計量電表 | DTSD1352 | 集成電力參數(shù)測量及電能計量及考核管理,提供上48月的各類電能數(shù)據(jù)統(tǒng)計:具有 2~31 次分次諧波與總諧波含量檢測,帶有開關量輸入和開關量輸出可實現(xiàn)“遜信"和“遙控"功能, 并具備報警輸出。帶有 RS485 通信接口,可選用MODBUS-RTU或 DL/T645 協(xié)議。 | |
4 | 直流計量電表 | DJSF1352 | 表可測量直流系統(tǒng)中的電壓、電流、功率以及正反向電能等; 具有紅外通訊接口和 RS-485 通訊接口,同時支持 Modbus-RTU 協(xié)議和 DLT645 協(xié)議:可帶維電器報警輸出和開關量輸入功能; | |
5 | 通信管理機 | ANet-2E8S1 | 能夠根據(jù)不同的采集規(guī)約進行水表、氣表、電表、微機保護等設備終端的數(shù)據(jù)采集匯總; 提供規(guī)約轉換、透明轉發(fā)、數(shù)據(jù)加密壓縮、數(shù)據(jù)轉換、邊緣計算等多項功能; 實時多任務并行處理數(shù)據(jù)采集和數(shù)據(jù)轉發(fā),可多鏈路上送平臺據(jù); | |
6 | 串口服務器 | Aport | 功能:轉換“輔助系統(tǒng)"的狀態(tài)數(shù)據(jù),反饋到能量管理系統(tǒng)中 1)空調的開關,調溫,及完quan斷電(二次開關實現(xiàn)) 2)上傳配電柜各個空開信號 3)上傳UPS內(nèi)部電量信息等 4)接入電表、BSMU等設備 | |
7 | 遙信模塊 | ARTU-K16 |
4)讀取門禁程傳感器信息,并轉發(fā)給到上層(門禁事件上報) |
5 結 論
針對光伏/風電/蓄電池-氫混合儲能微網(wǎng)系統(tǒng)調度運行問題,本文提出基于模型預測-動態(tài)規(guī)劃的能量管理策略,該策略可以協(xié)調蓄電池和燃料電池的功率分配,具有并網(wǎng)平波抵制功能且具有良好的經(jīng)濟性,算例分析表明,優(yōu)化后的儲能系統(tǒng)可有效提升電源能量管理的經(jīng)濟性和可靠性水平,為新能源高滲透率下的電網(wǎng)靈活調控提供有力支撐。未來還需要進一步開展儲能健康管理、多時間尺度協(xié)調優(yōu)化等方面的深入研究,促進儲能技術與電源能量管理的深度融合。
參考文獻
[1]朱永強,王甜婧,許闊,等. 基于動態(tài)規(guī)劃-遺傳算法的混合儲能系統(tǒng)實時協(xié)調調度和經(jīng)濟運行[J]. 太陽能學報,2019,40(4):1059-1066.
[2]杜祥偉,沈艷霞,李靜. 基于模型預測控制的直流微網(wǎng)混合儲能能量管理策略[J]. 電力系統(tǒng)保護與控制,2020,48(16):69-75.
[3]孫近文.大中型風電場混合儲能系統(tǒng)優(yōu)化配置及控制策略研究[D].武漢:華中科技大學,2017.
[4]祖其武,牛玉剛,陳蓓. 基于改進粒子群算法的微網(wǎng)多目標經(jīng)濟運行策略研究[J]. 電力系統(tǒng)保護與控制,2017,45(14):57-63.
[5]王承民,孫偉卿,衣濤,等. 智能電網(wǎng)中儲能技術應用規(guī)劃及其效益評估方法綜述[J]. 中國電機工程學報,2013,33(7):33-41,21.
[6]劉曉艷.基于模型預測-動態(tài)規(guī)劃的微網(wǎng)混合儲能能量管理.
[7]安科瑞企業(yè)微電網(wǎng)設計與應用手冊.2022年05版.
作者介紹:
任運業(yè),男,現(xiàn)任職于安科瑞電氣股份有限公司。